The Cauchy problem for the Navier-Stokes equations

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Remarks on the Cauchy problem for the axisymmetric Navier-Stokes equations

Motivated by applications to vortex rings, we study the Cauchy problem for the threedimensional axisymmetric Navier-Stokes equations without swirl, using scale invariant function spaces. If the axisymmetric vorticity ωθ is integrable with respect to the two-dimensional measure dr dz, where (r, θ, z) denote the cylindrical coordinates in R, we show the existence of a unique global solution, whic...

متن کامل

Optimization with the time-dependent Navier-Stokes equations as constraints

In this paper, optimal distributed control of the time-dependent Navier-Stokes equations is considered. The control problem involves the minimization of a measure of the distance between the velocity field and a given target velocity field. A mixed numerical method involving a quasi-Newton algorithm, a novel calculation of the gradients and an inhomogeneous Navier-Stokes solver, to find the opt...

متن کامل

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

On global weak solutions to the Cauchy problem for the Navier-Stokes equations with large L3-initial data

The aim of the note is to discuss different definitions of solutions to the Cauchy problem for the Navier-Stokes equations with the initial data belonging to the Lebesgue space L3(R 3) Dedicated to Professor Nicola Fusco on the occasion of his 60th birthday.

متن کامل

Inverse Boundary Value Problem for the Stokes and the Navier-stokes Equations in the Plane

In this paper, we prove in two dimensions global identifiability of the viscosity in an incompressible fluid by making boundary measurements. The main contribution of this work is to use more natural boundary measurements, the Cauchy forces, than the Dirichlet-to-Neumann map previously considered in [7] to prove the uniqueness of the viscosity for the Stokes equations and for the Navier-Stokes ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS

سال: 2020

ISSN: 2518-7929,2663-5011

DOI: 10.31489/2020m2/15-23